“The database is so fast. | don't
know if we'll ever max it out.”

-- Not Your Client, Inc.



“My database is slow.”

-- Every Single Support Client LLC



Performance
Whack-a-Mole




Part 1:
The Rules




The Stack

Database

Operating System
Hardware




The Stack

@ w Application

_ Drivers _ QEBHGGIGNS® _ Caching _ Middleware

Database

Operating System

w Hardware




The Stack

32 38 88 8

Application




Rules of Whack-a-Mole

1.Most “database performance problems”, or
Moles, are not actually database performance
problems.



The Hockey Stick

Affect on Performance

Ranked Issues



The Hockey Stick

Affect on Performance

Ranked Issues



Rules of Whack-a-Mole

1.Most “database performance problems”, or
Moles, are not actually database performance
problems.

2.Less than 10% of Moles cause 90% of
performance degradation.
e corollary: we don't care about the other 90% of Moles



The Hockey Stick

Affect on Performance

Ranked Issues



Rules of Whack-a-Mole

1.Most “database performance problems”, or
Moles, are not actually database performance
problems.

2.Less than 10% of Moles cause 90% of
performance degradation.
e corollary: we don't care about the other 90% of Moles

3.At any time, it is usually only possible to observe
and troubleshoot the “largest” Mole.



What Color Is My Application?

P \Web Application (Web)

@®DB smaller than RAM

@®90% or more simple read queries

m P Online Transaction Processing (OLTP)

@ DB slightly larger than RAM to 1TB
@®20-40% small data write queries
@®Some long transactions

E » Data Warehousing (DW)

@Large to huge databases (100GB to 100TB)

@Large complex reporting queries

@®Large bulk loads of data

@Also called "Decision Support" or "Business Intelligence”




What Color Is My Application?

P \Web Application (Web)

@CPU-bound
@®Moles: caching, pooling, connection time

I} P Online Transaction Processing (OLTP)

@CPU or I/0 bound
@®Moles: locks, cache, transactions, write speed, log

E » Data Warehousing (DW)

@®1/0 or RAM bound
@®Moles: seq scans, resources, bad queries



Rules of Whack-a-Mole

1.Most “database performance problems”, or
Moles, are not actually database performance
problems.

2.Less than 10% of Moles cause 90% of
performance degradation.
e corollary: we don't care about the other 90% of Moles

3.At any time, it is usually only possible to observe
and troubleshoot, or Whack, the “largest” Mole.

4 .Different application types usually have different
Moles and need different troubleshooting.



Part 2:
Baseline




What's a Baseline?

P Gather information about the system

@®you need to know what's happening at every level of the
stack

@identify potential trouble areas to come back to later

P Basic Setup

@ check the hardware/OS setup for sanity

@apply the conventional postgresql.conf calculations

@do conventional wisdom middleware and application setup
@should be fast run-though, like an hour



Why Baseline?

»\Why not just go straight to Whacking?

@extremely poor basic setup may mask more serious issues
@®baseline setup may turn out to be all that's needed
@deviations from baseline can be clues to finding Moles

@baseline will make your setup comparable to other
Installations so you can check tests

@clients/sysadmins/developers are seldom a reliable source of
bottleneck information



Steps for Baseline

1.Hardware setup

2.Filesystem & OS Setup
3.Database Configuration
4.Drivers, Pooling & Caching
5.Application Setup Information



Steps for Baseline

5 Application

3. Database

2. Operating System
Hardware




Steps for Baseline

3. Database

4. Operating System




Hardware Baseline

P Gather Data

@®Server
— CPU model, speed, number, arch
—RAM quantity, speed, configuration
@ Storage
— Interface (cards, RAID)
— Disk type, size, speed
— Array/SAN configuration
@ Network
— network type and bandwith
—devices and models
— switch/routing configuration



Hardware Baseline

P Baseline

@ Storage

— Use appropriate RAID configuration

— Turn on write caching if safe

— Make sure you're using all channels/devices
@®Network

— application servers & DB server should be on dedicated
network

—use redundant connections & load balancing if available



Operating System Baseline

»OS

@gather data

—OS, version, patch level, any modifications made

— hardware driver information

—system usage by other applications (& resource usage)
@®baseline

— update to latest patch level (probably)

— update hardware drivers (probably)

— migrate conflicting applications

- other DBMSes
— other applications with heavy HW usage



Operating System Baseline

P Filesystem

@gather data
—filesystem type, partitions
—locations of files for OS, Database, other apps
—filesystem settings
@baseline
—move transaction log to separate disk/array/partition

—set filesystem for general recommendations

— lower journaling levels

— directio for xlog (if possible)
- aggressive caching for DB
- other settings specific to FS



Operating System Baseline

»OLTP Server running on Solaris 10

@®Updated to Update3
— Fibercard driver patched

@Dedicated Server
—MySQL removed to less critical machine

@ Solaris settings configured:
- set segmapsize=10737418240
- set ufs:freebehind=0
- set segmap_percent=50
@Filesystem configured:

- mount -o forcedirectio /dev/rdsk/cntndnsn /mypath/pg_xlog
- tunefs -a 128 /mypath/pg_xlog



Database Baseline

P Gather Data

@®schema
—tables: design, data size, partitioning, tablespaces
—indexes
— stored procedures
@ configuration settings
—ask about any non-defaults
@®maintenance
—have maintenance routines been run?
—when and with what settings?



Middleware Baseline
P Gather data

@DB drivers: driver, version

@ Connections: method, pooling (if any), pooling configuration
@ Caching: methods, tools used, versions, cache configuration
@®ORM: software, version

P Baseline

@ Update to latest middleware software: drivers, cache, etc.
@ Utilize all pooling and caching methods available
— use prepared queries
—plan, parse, data caching (if available)
— pool should be sized to the maximum connections needed
— persistent connections if no pool



Application Baseline

P Gather data

@ application type
@transaction model and volume
@query types and relative quantities
— get some typical queries, or better, logs
@stored procedure execution, if any
@understand how the application generally works
—get a use perspective
—find out purpose and sequence of usage
— usage patterns: constant or peak traffic?



Part 3:
Tools for
Mole-Hunting

) ——8




Types of Tools: HW & OS

P Operating system tools

@simple & easy to use, non-invasive
@Iet you monitor hardware usage, gross system characteristics
@ often the first option to tell what kind of Mole you have

P Benchmarks & microbenchmarks

@very invasive: need to take over host system
@allow comparable testing of HW & OS



Types of Tools: Database

P database admin views, DTrace

@ minimally invasive, fast

@give you more internal data about what's going on in the DB
realtime

@let you spot schema, query, lock problems
P Database query log

@somewhat invasive, slow
@allows introspection on specific types of db activity
@ compute overall statistics on query, DB load

P Query Analysis

@troubleshoot “bad queries”
@for fixing specific queries only



Types of Tools: Application

P Application server tools
@response time analysis tools
@database activity monitoring tools
@ cache usage monitoring
P \Workload simulation & screen scraping
@the best benchmark is a simulation of your own application
@tools like Iwp and log replay tools
P Bug detection tools

@®valgrind, MDB, GDB, DTrace
@sometimes your performance issue is a genuine software bug



Part 3a:
Operating
J System Tools

—




pPS

P lets you see running processes

@gives you an idea of concurrent activity & memory/cpu usage
@lets you spot hung and long-running statements/connections

mpstat

P see CPU activity for each CPU

@find out if you're CPU-bound
@sce if all CPUs are being utilized
@ detect context-switch issues



vimstat, free

P \Watch memory usage

@sce if RAM is saturated
—are you not able to cache enough?
—are you swapping?

iostat

P monitor usage of storage

@sce if 1/0 is saturated
@sce if one storage resource is bottlenecking everything else
@ watch for checkpoint spikes



Part 3b:
Benchmarks

) ——8




Benchmarks vs. Microbenchmarks

» Benchmarks

@®work out multiple areas of performance
@require time, effort, hardware to run
@create reproduceable results

@create comparable results

» Microbenchmarks

@®work out one area of performance
@quick & easy to run
@results may not be reproduceable or comparable



Microbenchmarks: bonnie++

P Filesystem performance test

@see I/0 throughput & issues
@check seek, random write speeds



Database Microbenchmarks

P pgbench/Wisconsin/TPCB

@tests mostly 1/0 and connection processing speed
@doesn't test locking, computation, or query planning
@ results sometimes not reproducable

@ mostly useful to prove large OS+HW issues
— not useful for fine performance tuning

P OSDB/PolePosition

@tests specific database operations
@ useful to find specific queries/operations to avoid
@®not useful for general performance tests



Benchmarks: pgbench

pgkbench transactions-ssec

12@080 , , . , , . 1588

T
TFS
Datakhase Size (HME2

1488
1388

16868 -
12848

11808
Z0EE - 1oE8
288
saa

TRS

GHEE |-
FHAE

cHEA

4888 |- 2daa

Datakasze Size (HME2

488
2da
caaa -
cEa

lag

Scaling factor

Thanks to Greg Smith for this graph!



Benchmarks: Serious

P Use serious benchmarks only when you have a
spare systems, or a problem which makes the
system unusable

@®you'll have to take the system offline

@it gives you reproduceable results to send to vendors &
mailing lists

@®best way to go after proven bugs you can't work around
P Each real benchmark tests a different workload
@so pick the one closest to yours



Benchmarks: Serious

»DBT Benchmarks

@ Serious OLTP benchmark
—based on TPCC

—reproduceable results, works out a lot more of the system
—complex & time-consuming to set up, run

»DBT3, DBT5
@new OLTP and DW benchmarks

P Others being developed

®web2.0
@CEAstress



|6~




Hunting Moles

P \What kind?

@®\What are the symptoms?
—response times
—error messages

»\When?

@ activity which causes the problem
—general slowdown or specific operation, or periodic?
— caused just by one activity, or by several?
@ concurrent system activity
—system/DB load?
—what other operations are going on on the system?



Common Types of Moles

»1/O Mole

@behavior: cpu underutilized: ram available, 1/0 saturated for
at least one device

@habitats: [D], [O], any heavy write load or very large database
@common causes:

—bad I/O hardware/software

—bad I/O config

—not enough ram

—too much data requested from application

—bad schema: missing indexes or partitioning needed



Common Types of Moles

»CPU Mole

@behavior: cpus at 90% or more: ram available, 1/O not
saturated

@habitats: [W], [O], mostly-read loads or those involving
complex calculation in queries

@causes:
—too many queries
—insufficient caching/pooling
—too much data requested by application
—bad queries
—bad schema: missing indexes

@ can be benign: most DB servers should be CPU-bound at
maximum load



Common Types of Moles

P ocking Mole

@behavior: nothing on DB or App server is at maximum, but
many queries have long waits, often heavy context switching,
pPg_locks sometimes shows waits

@habitats: [O], [D], or loads involving pessimistic locking and/or
stored procedures

@causes:
—long-running transactions/procedures
—cursors held too long
— pessimistic instead of optimistic locking or userlocks
— poor transaction management (failure to rollback)
—various buffer settings in .conf too low
— SMP scalability limits



Common Types of Moles

P Application Mole

@behavior: nothing on DB server is at maximum, but RAM or
CPU on the App servers is completely utilized

@habitats: common in J2EE
@causes:
—not enough application servers
—too much data / too many queries
—bad caching/pooling config
—driver issues
— ORM



Part 4a:
Hunting Moles
Examples

' —




Slow DW

P Setup

@Data warehousing application
@Both bulk loads and large reporting queries were very slow

@CPU and RAM were OK, and I/0 seemed underused
—except it never got above a very low ceiling

»The |

unt

@used dd, bonnie++, iostat to check 1/0 behavior
@throughput of JBOD was much slower than internal disk
@ compared with similar system by another vendor

» The Whack

@the RAID card used in that model was defective, replaced



Checkpoint Spikes

P Setup

@OLTP benchmark, but not as fast as MySQL
@®Nothing was maxxed
@ Query throughput cycled up and down

P The Hunt

@checked iostat, saw 5-minute cycle
@installed, checked pg_stat_bgwriter
—showed high amount of buffers_checkpoint

» The Whack

@increased bgwriter frequency, amounts
@spikes decreased, overall throughput rose slightly



Connection Management

P The Setup

@ JSP web application good 23 hours per day, but bombing
during the peak traffic hour

— DB server would run out of RAM and stop responding

» The Hunt

@®watched pg_stat_activity and process list during peak
periods, took snapshots

—saw that connections went up to 2000+ during peak, yet many
of them were idle

—verified this by logging connections
@checked Tomcat configuration
— connection pool: 200 connections
—servers were set to reconnect after 10 seconds timeout



Connection Management

» The Whack

@ Tomcat was “bombing” the database with thousands of failed
connections

—faster than the database could fulfill them
@Fixed configuration

— min_connections for pool set to 700

— connection_timeout and pool connection timeout synchronized
@®Suggested improvements

— upgrade to a J2EE architecture with better pooling



Too Many Queries

P The Setup

@c++ client-server application took 3+ minutes to start up

» The Hunt

@®set pg_log to log queries
—ran application startup

@ran through pg_fouine
—showed over 20,000 queries during startup
— most of them identical when normalized

» The Whack

@the application was walking several large trees, node-by-node

@taught the programmers to do batch queries and use
connect_by()



Undead Transactions

P The Setup

@Perl OLTP application was fast when upgraded, but became
slower & slower with time

» The Hunt

@checked db maintenance schedule: vacuum was being run

—vyet pg_tables showed tables were growing faster than they
should, indexes too

—vacuum analyze verbose showed lots of “dead tuples could not
be removed”

@checked pg_stat_activity and process list
—“idle in transaction”
—some transactions were living for days



Undead Transactions

» The Whack

@®programmers fixed application bug to rollback failed
transactions instead of skipping them

@added “undead transaction” checker to their application
monitoring



Is The Mole Dead?

Yes, which means it's time to move on
to the next mole.

Isn't this fun?



Further Questions

P Josh Berkus » More Advice
@®josh@postgresql.org @®www.postgresql.org/docs
@®josh@pgexperts.com @®www.planetpostgresql.org
@ www.pgexperts.com @irc.freenode.net
@it.toolbox.com/blogs/ —#postgresq|

database-soup

Special thanks for borrowed content to:
www.MolePro.com for the WhackaMole Game
Greg Smith for pgbench and bonnie++ results

Eﬂﬂiﬂﬁ%ﬂﬁiﬂ This talk is copyright 2008 Josh Berkus, and is licensed under the creative commons attribution license




