

“The database is so fast. I don't
know if we'll ever max it out.”

-- Not Your Client, Inc.

“My database is slow.”

-- Every Single Support Client LLC

Performance
Whack-a-Mole

Part 1:
The Rules

The Stack

HardwareStorage

Operating System

Database

Middleware

Application

Filesystem

Schema

Drivers

Queries

RAM/CPU Network

Kernel

Config

Connections Caching

Transactions

The Stack

HardwareStorage

Operating System

Database

Middleware

Application

Filesystem

Schema

Drivers

Queries

RAM/CPU Network

Kernel

Config

Connections Caching

Transactions

The Stack

HW

Application

Middleware

Database

OS

Rules of Whack-a-Mole

1.Most “database performance problems”, or
Moles, are not actually database performance
problems.

The Hockey Stick
A

ffe
ct

 o
n

P
er

fo
rm

an
ce

Ranked Issues

The Hockey Stick
A

ffe
ct

 o
n

P
er

fo
rm

an
ce

Ranked Issues

Rules of Whack-a-Mole

1.Most “database performance problems”, or
Moles, are not actually database performance
problems.

2.Less than 10% of Moles cause 90% of
performance degradation.
● corollary: we don't care about the other 90% of Moles

The Hockey Stick
A

ffe
ct

 o
n

P
er

fo
rm

an
ce

Ranked Issues

Rules of Whack-a-Mole

1.Most “database performance problems”, or
Moles, are not actually database performance
problems.

2.Less than 10% of Moles cause 90% of
performance degradation.
● corollary: we don't care about the other 90% of Moles

3.At any time, it is usually only possible to observe
and troubleshoot the “largest” Mole.

What Color Is My Application?
►Web Application (Web)
●DB smaller than RAM
●90% or more simple read queries

►Online Transaction Processing (OLTP)
●DB slightly larger than RAM to 1TB
●20-40% small data write queries
●Some long transactions

►Data Warehousing (DW)
●Large to huge databases (100GB to 100TB)
●Large complex reporting queries
●Large bulk loads of data
●Also called "Decision Support" or "Business Intelligence"

W

O

D

What Color Is My Application?
►Web Application (Web)
●CPU-bound
●Moles: caching, pooling, connection time

►Online Transaction Processing (OLTP)
●CPU or I/O bound
●Moles: locks, cache, transactions, write speed, log

►Data Warehousing (DW)
●I/O or RAM bound
●Moles: seq scans, resources, bad queries

W

O

D

Rules of Whack-a-Mole

1.Most “database performance problems”, or
Moles, are not actually database performance
problems.

2.Less than 10% of Moles cause 90% of
performance degradation.
● corollary: we don't care about the other 90% of Moles

3.At any time, it is usually only possible to observe
and troubleshoot, or Whack, the “largest” Mole.

4.Different application types usually have different
Moles and need different troubleshooting.

Part 2:
Baseline

What's a Baseline?

►Gather information about the system
●you need to know what's happening at every level of the

stack
●identify potential trouble areas to come back to later

►Basic Setup
●check the hardware/OS setup for sanity
●apply the conventional postgresql.conf calculations
●do conventional wisdom middleware and application setup
●should be fast run-though, like an hour

Why Baseline?

►Why not just go straight to Whacking?
●extremely poor basic setup may mask more serious issues
●baseline setup may turn out to be all that's needed
●deviations from baseline can be clues to finding Moles
●baseline will make your setup comparable to other

installations so you can check tests
●clients/sysadmins/developers are seldom a reliable source of

bottleneck information

Steps for Baseline

1.Hardware setup
2.Filesystem & OS Setup
3.Database Configuration
4.Drivers, Pooling & Caching
5.Application Setup Information

Steps for Baseline

HardwareStorage

Operating System

Database

Middleware

Application

Filesystem

Schema

Drivers

Queries

RAM/CPU Network

Kernel

Config

Connections Caching

Transactions

1.

2.

3.

4.

5.

Steps for Baseline

HardwareStorage

Operating System

Database

Middleware

Application

Filesystem

Schema

Drivers

Queries

RAM/CPU Network

Kernel

Config

Connections Caching

Transactions

5.

4.

3.

2.

1.

Hardware Baseline

►Gather Data
●Server

▬CPU model, speed, number, arch
▬RAM quantity, speed, configuration

●Storage
▬ Interface (cards, RAID)
▬Disk type, size, speed
▬Array/SAN configuration

●Network
▬ network type and bandwith
▬ devices and models
▬ switch/routing configuration

Hardware Baseline

►Baseline
●Storage

▬Use appropriate RAID configuration
▬Turn on write caching if safe
▬Make sure you're using all channels/devices

●Network
▬ application servers & DB server should be on dedicated

network
▬ use redundant connections & load balancing if available

Operating System Baseline

►OS
●gather data

▬OS, version, patch level, any modifications made
▬ hardware driver information
▬ system usage by other applications (& resource usage)

●baseline
▬ update to latest patch level (probably)
▬ update hardware drivers (probably)
▬migrate conflicting applications

– other DBMSes
– other applications with heavy HW usage

Operating System Baseline

►Filesystem
●gather data

▬ filesystem type, partitions
▬ locations of files for OS, Database, other apps
▬ filesystem settings

●baseline
▬move transaction log to separate disk/array/partition
▬ set filesystem for general recommendations

– lower journaling levels
– directio for xlog (if possible)
– aggressive caching for DB
– other settings specific to FS

Operating System Baseline

►OLTP Server running on Solaris 10
●Updated to Update3

▬Fibercard driver patched
●Dedicated Server

▬MySQL removed to less critical machine
●Solaris settings configured:

– set segmapsize=10737418240
– set ufs:freebehind=0
– set segmap_percent=50

●Filesystem configured:
– mount -o forcedirectio /dev/rdsk/cntndnsn /mypath/pg_xlog
– tunefs -a 128 /mypath/pg_xlog

Database Baseline

►Gather Data
●schema

▬ tables: design, data size, partitioning, tablespaces
▬ indexes
▬ stored procedures

●configuration settings
▬ ask about any non-defaults

●maintenance
▬ have maintenance routines been run?
▬when and with what settings?

Middleware Baseline
►Gather data
●DB drivers: driver, version
●Connections: method, pooling (if any), pooling configuration
●Caching: methods, tools used, versions, cache configuration
●ORM: software, version

►Baseline
●Update to latest middleware software: drivers, cache, etc.
●Utilize all pooling and caching methods available

▬ use prepared queries
▬ plan, parse, data caching (if available)
▬ pool should be sized to the maximum connections needed
▬ persistent connections if no pool

Application Baseline

►Gather data
●application type
●transaction model and volume
●query types and relative quantities

▬ get some typical queries, or better, logs
●stored procedure execution, if any
●understand how the application generally works

▬ get a use perspective
▬ find out purpose and sequence of usage
▬ usage patterns: constant or peak traffic?

Part 3:
Tools for

Mole-Hunting

Types of Tools: HW & OS

►Operating system tools
●simple & easy to use, non-invasive
●let you monitor hardware usage, gross system characteristics
●often the first option to tell what kind of Mole you have

►Benchmarks & microbenchmarks
●very invasive: need to take over host system
●allow comparable testing of HW & OS

Types of Tools: Database
►database admin views, DTrace
●minimally invasive, fast
●give you more internal data about what's going on in the DB

realtime
●let you spot schema, query, lock problems

►Database query log
●somewhat invasive, slow
●allows introspection on specific types of db activity
●compute overall statistics on query, DB load

►Query Analysis
●troubleshoot “bad queries”
●for fixing specific queries only

Types of Tools: Application

►Application server tools
●response time analysis tools
●database activity monitoring tools
●cache usage monitoring

►Workload simulation & screen scraping
●the best benchmark is a simulation of your own application
●tools like lwp and log replay tools

►Bug detection tools
●valgrind, MDB, GDB, DTrace
●sometimes your performance issue is a genuine software bug

Part 3a:
Operating

System Tools

ps

►lets you see running processes
●gives you an idea of concurrent activity & memory/cpu usage
●lets you spot hung and long-running statements/connections

mpstat

►see CPU activity for each CPU
●find out if you're CPU-bound
●see if all CPUs are being utilized
●detect context-switch issues

vmstat, free

►Watch memory usage
●see if RAM is saturated

▬ are you not able to cache enough?
▬ are you swapping?

iostat

►monitor usage of storage
●see if I/O is saturated
●see if one storage resource is bottlenecking everything else
●watch for checkpoint spikes

Part 3b:
Benchmarks

Benchmarks vs. Microbenchmarks

►Benchmarks
●work out multiple areas of performance
●require time, effort, hardware to run
●create reproduceable results
●create comparable results

►Microbenchmarks
●work out one area of performance
●quick & easy to run
●results may not be reproduceable or comparable

Microbenchmarks: bonnie++

►Filesystem performance test
●see I/O throughput & issues
●check seek, random write speeds

Database Microbenchmarks

►pgbench/Wisconsin/TPCB
●tests mostly I/O and connection processing speed
●doesn't test locking, computation, or query planning
●results sometimes not reproducable
●mostly useful to prove large OS+HW issues

▬ not useful for fine performance tuning

►OSDB/PolePosition
●tests specific database operations
●useful to find specific queries/operations to avoid
●not useful for general performance tests

Benchmarks: pgbench

Thanks to Greg Smith for this graph!

Benchmarks: Serious

►Use serious benchmarks only when you have a
spare systems, or a problem which makes the
system unusable
●you'll have to take the system offline
●it gives you reproduceable results to send to vendors &

mailing lists
●best way to go after proven bugs you can't work around

►Each real benchmark tests a different workload
●so pick the one closest to yours

Benchmarks: Serious

►DBT Benchmarks
●Serious OLTP benchmark

▬ based on TPCC
▬ reproduceable results, works out a lot more of the system
▬ complex & time-consuming to set up, run

►DBT3, DBT5
●new OLTP and DW benchmarks

►Others being developed
●web2.0
●EAstress

Part 4:
Hunting Moles

Hunting Moles

►What kind?
●What are the symptoms?

▬ response times
▬ error messages

►When?
●activity which causes the problem

▬ general slowdown or specific operation, or periodic?
▬ caused just by one activity, or by several?

●concurrent system activity
▬ system/DB load?
▬what other operations are going on on the system?

Common Types of Moles

►I/O Mole
●behavior: cpu underutilized: ram available, I/O saturated for

at least one device
●habitats: [D], [O], any heavy write load or very large database
●common causes:

▬ bad I/O hardware/software
▬ bad I/O config
▬ not enough ram
▬ too much data requested from application
▬ bad schema: missing indexes or partitioning needed

Common Types of Moles

►CPU Mole
●behavior: cpus at 90% or more: ram available, I/O not

saturated
●habitats: [W], [O], mostly-read loads or those involving

complex calculation in queries
●causes:

▬ too many queries
▬ insufficient caching/pooling
▬ too much data requested by application
▬ bad queries
▬ bad schema: missing indexes

●can be benign: most DB servers should be CPU-bound at
maximum load

Common Types of Moles

►Locking Mole
●behavior: nothing on DB or App server is at maximum, but

many queries have long waits, often heavy context switching,
pg_locks sometimes shows waits
●habitats: [O], [D], or loads involving pessimistic locking and/or

stored procedures
●causes:

▬ long-running transactions/procedures
▬ cursors held too long
▬ pessimistic instead of optimistic locking or userlocks
▬ poor transaction management (failure to rollback)
▬ various buffer settings in .conf too low
▬SMP scalability limits

Common Types of Moles

►Application Mole
●behavior: nothing on DB server is at maximum, but RAM or

CPU on the App servers is completely utilized
●habitats: common in J2EE
●causes:

▬ not enough application servers
▬ too much data / too many queries
▬ bad caching/pooling config
▬ driver issues
▬ORM

Part 4a:
Hunting Moles

Examples

Slow DW

►Setup
●Data warehousing application
●Both bulk loads and large reporting queries were very slow
●CPU and RAM were OK, and I/O seemed underused

▬ except it never got above a very low ceiling

►The Hunt
●used dd, bonnie++, iostat to check I/O behavior
●throughput of JBOD was much slower than internal disk
●compared with similar system by another vendor

►The Whack
●the RAID card used in that model was defective, replaced

Checkpoint Spikes

►Setup
●OLTP benchmark, but not as fast as MySQL
●Nothing was maxxed
●Query throughput cycled up and down

►The Hunt
●checked iostat, saw 5-minute cycle
●installed, checked pg_stat_bgwriter

▬ showed high amount of buffers_checkpoint

►The Whack
●increased bgwriter frequency, amounts
●spikes decreased, overall throughput rose slightly

Connection Management

►The Setup
●JSP web application good 23 hours per day, but bombing

during the peak traffic hour
▬DB server would run out of RAM and stop responding

►The Hunt
●watched pg_stat_activity and process list during peak

periods, took snapshots
▬ saw that connections went up to 2000+ during peak, yet many

of them were idle
▬ verified this by logging connections

●checked Tomcat configuration
▬ connection pool: 200 connections
▬ servers were set to reconnect after 10 seconds timeout

Connection Management

►The Whack
●Tomcat was “bombing” the database with thousands of failed

connections
▬ faster than the database could fulfill them

●Fixed configuration
▬min_connections for pool set to 700
▬ connection_timeout and pool connection timeout synchronized

●Suggested improvements
▬ upgrade to a J2EE architecture with better pooling

Too Many Queries

►The Setup
●c++ client-server application took 3+ minutes to start up

►The Hunt
●set pg_log to log queries

▬ ran application startup
●ran through pg_fouine

▬ showed over 20,000 queries during startup
▬most of them identical when normalized

►The Whack
●the application was walking several large trees, node-by-node
●taught the programmers to do batch queries and use

connect_by()

Undead Transactions

►The Setup
●Perl OLTP application was fast when upgraded, but became

slower & slower with time

►The Hunt
●checked db maintenance schedule: vacuum was being run

▬ yet pg_tables showed tables were growing faster than they
should, indexes too

▬ vacuum analyze verbose showed lots of “dead tuples could not
be removed”

●checked pg_stat_activity and process list
▬ “idle in transaction”
▬ some transactions were living for days

Undead Transactions

►The Whack
●programmers fixed application bug to rollback failed

transactions instead of skipping them
●added “undead transaction” checker to their application

monitoring

Is The Mole Dead?

Yes, which means it's time to move on
to the next mole.

Isn't this fun?

Further Questions

►Josh Berkus
●josh@postgresql.org
●josh@pgexperts.com
●www.pgexperts.com
●it.toolbox.com/blogs/

database-soup

►More Advice
●www.postgresql.org/docs
●www.planetpostgresql.org
●irc.freenode.net

▬ #postgresql

This talk is copyright 2008 Josh Berkus, and is licensed under the creative commons attribution license

Special thanks for borrowed content to:
www.MolePro.com for the WhackaMole Game
Greg Smith for pgbench and bonnie++ results

